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Almtraet--A small amplitude long wavelength nonlinear analysis is used to examine the stability of a 
uniformly fluidized bed. This work has the same objectives as that of a previous study by Liu. Although 
both analyses are based on the same model, there are major differences in interpretation and in the formula 
for the equilibrium amplitude. The analysis presented here implies that small amplitude sinusoidal 
perturbations about an unstable state do not equilibrate in a gas fluidized bed, in contrast to Liu's 
conclusion that there is equilibration. Numerical calculations on the original model describing a gas 
fluidized bed verify the analysis given here and extend it to larger amplitudes and smaller wavelengths. 
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1. I N T R O D U C T I O N  

In the past, linearized equations based on the two-fluid model have been used to investigate the 
stability of the state of uniform fluidization (e.g. Pigford & Baron 1965; Anderson & Jackson 1968; 
Needham & Merkin 1983; Liu 1982). The studies have shown that, in many instances, these 
equilibrium states are unstable. It is of course taken for granted that the perturbations must be 
of a relatively small amplitude in order for the analysis to be consistent. In the case when the 
perturbations grow in amplitude, it is clear that nonlinear considerations become important. 

Many nonlinear analyses have been performed on the equations of motion (e.g. Fanucci et  al. 

1979, 1981; Needham & Merkin 1983; Liu 1983). However, the relationship between the linear 
stability analysis and the nonlinear analysis is studied in detail only in the work of Liu (1982, 1983). 
The nonlinear analysis of Needham & Merkin (1983, p. 449) only briefly mentions that a limit cycle 
bifurcates from an equilibrium point in an equation that describes traveling wave solutions of the 
model equations. This periodic solution is neither calculated nor its relationship to linearly unstable 
perturbations discussed. 

The analysis presented here has the same objectives as those of Liu (1983): a small amplitude, 
long wavelength, nonlinear study about the uniform state which leads to a "Landau" equation for 
the amplitude. Both studies are based on the same model equations and make the same simplifying 
assumptions (although at different places in the analysis). In both studies the original system of 
partial differential equations is replaced with a simpler nonlinear equation for one dependent 
variable. Ostensibly, the equations are similar. However, there are important differences in sign 
as well as in the interpretations of the effects of the nonlinearities on the evolution of the 
perturbations. Liu's perturbation analysis of his simplified equation follows closely the work of 
Stuart (1960) and results in an evolution for the amplitude of the unstable disturbance. We adopt 
a different scheme, using instead a multiple time scale analysis employed by Ganser (1983) on a 
very similar problem. This also leads to an evolution equation for the amplitude which has a 
different (nontrivial) equilibrium amplitude. The conclusions of Liu and those given in this paper 
are in opposition to one another. Liu's calculations imply equilibration of small amplitude and 
long wavelength disturbances (in a gas fluidized bed), while our calculations show there is no 
equilibration and that the equilibrium amplitude is unstable. Our analysis is substantiated by 
evidence obtained from numerical experimentation. 

In both studies, the analysis is limited to spatial variations in only the vertical direction. We 
restrict considerations to gas fluidized particles and neglect the inertia of the gas as well as virtual 

447 



448 G.H. GANSER and D. A. DREW 

mass effects. However, we do include particle viscosity and particle pressure and assume that they 
are functions of particle concentration. This is basically the model studied by Needham & Merkin 
(1983) and Liu (1983). Liu initially includes the inertia of the fluid phase and virtual mass effects. 
However, he later assumes the ratio of the fluid density to particle density to be small and thus 
his model effectively reduces to the simpler model. 

Section 2 briefly presents the general two-fluid model and its simplifications for gas fluidized 
particles. A review of the relevant results of linear theory is given in section 3 and, in particular, 
the existence of a critical wave number that separates stable wave numbers (larger) from unstable 
wave numbers (smaller). Section 4 contains the nonlinear analysis related to the existence and 
temporal stability of the periodic solutions that bifurcate from the uniformly fluidized state at the 
critical wave number. In section 5 numerical calculations of the periodic solutions show agreement 
kwith the results of section 4 for small amplitude and large wavelength (small wave number) and 
the section also covers the case of larger amplitudes and smaller wavelengths. 

2. BASIC EQUATIONS 

In what follows, the subscript d will refer to the particle or dispersed phase and the subscript c 
to the fluid or continuous phase. We assume each phase is incompressible. The conservation of 
mass equations restricted to one-dimension with the positive x-axis pointing upwards are 

0~ 0(~vd) 
4 - 0 [la] 

3t 8x 
and 

8(1 - ~ )  ~((1 - e) v~) 
O ~  4 Ox = 0, [lb] 

where c¢ is the dispersed phase or particle volume concentration and v is velocity. The conservation 
of momentum equations for both phases are (Drew 1983; Homsy et al. 1980) 

p[a(~,O a(~O] a(T.) 
d L- -~ - -  + - - O - 7 - x  = a- - -~  - I - Pd ~g [ 2 a ]  

and 

where 

and 

p~[O((1-cOv~) O((1 - ~) v~)] 8(T~) 
-St -t -Sx = 8 - - - -~+I - -p~(1-~)g ,  [2b] 

I = - p ¢ - ~ x - B ( v c - v a ) - a P ~ C v M  +v¢--~-x ) - \  Ot +Vd , 

~(vd) 
Td = -- p~ ~ + ~lJd 8x 

a(vo) 
T c = - p ~ ( 1 - ~ ) + ( 1 - c ~ ) U ~  8x " 

The drag coefficient is denoted by B, CvM is the virtual mass coefficient, p is the pressure and 
p is the viscosity of each phase. As is frequently done in analytical work, a linear drag law is 
assumed (Needham & Merkin 1983; Liu 1982, 1983; Fanucci et al. 1979, 1981). The form for the 
virtual mass effect is chosen to be that used by Liu (1983). Substitution of the forms for L Td and 
Tc into [2a, b] yields 

[-a(~vd) a(~ev2) -1 a(p¢) 8(~(pd-p¢))  
P a [ ~  8x Ox 3x J 

+otp¢CvM +V¢ 8x I - \  8t )J [3a] 
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and 

p~[O((1-~)v=) O((1-at)v~)]  - ( 1 - a ) O ( P = )  
Ot" -~ O'x = ~ --pc(1 --oOg --B(vc--vd) 

 (vo)'x + ((1- } a(vo)'  [a(v,), a(v,),7 
-otp¢CvM,__ +v¢---~-x }--\---~-t-Vd---~X ) ] .  [36] dx 

Since B is assumed to be only a function of ~, this dependence can be determined by steady-state 
experiments. A typical form is (Anderson & Jackson 1968; Needham & Merkin 1983) 

B(a) = a(1 - ~)z-n K, 

where K = 9#¢/2R 2,/~c is the viscosity of the continuous phase and R is the radius of the particles. 
For our purposes a more convenient form is K = gpd/Vt, where vt is the terminal velocity of an 
isolated particle. Typical values for n are approx. 2-4 (Anderson & Jackson 1968; Homsy et al. 
1980; Needham & Merkin 1983). 

The magnitude of #d suggested by the work of Homsy et al. (1980) (liquid-solid), Needham & 
Merkin (1983) (gas-solid), Fanucci et al. (1981) (gas-solid) and Anderson & Jackson (1968) (both 
liquid-solid and gas-solid) is 10 P. Homsy et al. (1980) also estimate CvM to be of the order of 
2-8. The collisional pressure ~(Pa-Pc)--=Pd v~tF(~) is assumed to be a function of ~, as in the 
work of Homsy et al. (1980), Liu (1983), Drew (1983) and Needham & Merkin (1983). A similar 
constitutive assumption is made in the work of Foscolo & Gibilaro (1987). The derivative, F '  > 0 
is further assumed constant, as in Homsy et al. (1980), Liu (1983) and Needham & Merkin (1983). 

The analysis will be restricted to gas fluidized particles so that the inertia and viscosity of the 
gas phase can be neglected. This corresponds to setting Pc = 0 in [3a, b]. This simplification allows 
p to be eliminated from [3a], yielding 

r-~ (/)d) ~ (Vd) q 
-t 

1 - ~t ~ x  O x  

If we add [la, b] and integrate, we get 

[4] 

• Vd + (1 -- ~) Vc = j, [5] 

wherej is the volumetric flux--assumed to be a constant parameter. Equations [la], [4] and [5] are 
the equations studied by Needham & Merkin (1983) and essentially those studied by Liu (1983), 
who assumes pe<<pd (p. 338) later in his calculations. 

3. REVIEW OF LINEAR THEORY 

An objective of this paper is to investigate the stability of a uniformly fluidized state. Using either 
[4] and [5], or [3a, b] and [5], those equilibrium states corresponding to Vd = 0 with no spatial 
variation in ~ or vo are given by 

and 

(1 - ~0) v¢0 = j  [6a] 

V~o = vt (1 - ~0)n-1 

TO study the stability of these states, we introduce the dimensionless variables 

[6b] 

X* =~X -- Ckt 
L ' [7a] 

t/)e 0 
t* = - -  [7b] 

L '  
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~(x, t) = ot o + aS(x* ,  t*), 

Vd(X, t) = av~o gd(x*, t*) 

[7c] 

[7d] 

and 

vc(x, t) = v~o + av~o 6c(x*, t*). [7el 

The parameter c k = v~0 ~0 n is the linear kinematic wave speed, while L and " a "  are the length scale 
and amplitude scale, respectively. Substitution of [7a-e] into [la], [4] and [5], and retaining only 
terms of O(a),  yields the linearized equations. These can be used to find an equation in only the 
variable 8. See, for example, Liu (1982) or Needham & Merkin (1983). See also the more recent 
linear analysis by Batchelor (1988). In the current notation this equation is (superscript ~ dropped) 

0 : O{t* - -  R I  I o~t ,v ,x ,  71_ R { I  o%~.~. + v(a,.,. + (Co+ + Co_) ~x*,. + co+ Co ~,-.~*L [8] 

where 

and 

Ri_l ~to(1 -- °~o) 2#do 
= BoL2 ' R 2 J = C k R ?  1, 

Uc0 

Ck v, 
Co+ - + (F') m, 

UcO Uc0 

L~ v~0(1 - 0~0) 
v = 7 ,  Lc= , B0=B[~0] 

L g 

/ ~ o  = #d (~0)- 

Except for a factor of (l - ~0), v is the Froudc number of the system. It is the ratio of two length 
scales. The distance over which the particle concentration is varying is denoted by L, and L~ is 
approximately the distance particles need to travel to change (either increase or decreasc) thcir 
velocity by 0 (v~0) while the net force acting on the particles is of the same magnitude as the force 
due to gravity. In the present model, the forces acting on the particles (gravity, interfacial forces 
and pressure) arc of this magnitude. If L >> L c, then Lc will roughly correspond to the distance the 
particles travel (since the particles arc required to adjust their velocity by order vo0) before they 
reach equilibrium. 

In the classical linear analysis, solutions of the form 

ei(x * - o~t*) 

are substituted into [8]. Note that since x* is normalized, 1/L plays the role of the wave number 
which, in this case, corresponds in physical variables to a wavelength of 2r~L. As shown in Needham 
& Merkin (1983) or Liu (1982), the ~0 state is linearly stable with respect to all wave numbers when 

F '  > n 2 ( 1  - Oto) 2 n -  2 ~ 2  (Co+ > 0). [%1 

The critical state ~ is defined by the equation 

F '  = n2(1 - ~)2.-2 (a~)2 (Co+ = 0). [9bl 

The ao states are linearly unstable, but only with respect to certain wave numbers, when 

F '  < n2(1 - ~0) 2n -2 ~2 (CO+ < 0). [9C] 

It is clear from these calculations that particle pressure at high concentrations (small j ) stabilizes 
the uniformly fluidized state for ~0 > ~ .  As j is increased above a critical flux jc corresponding to 
~ ,  the a0 states less than ~ become unstable. However, only the wave numbers smaller than Lo 
(which depends on ~0) are unstable, where L0 is given implicitly by the equation 

i = c o + .  [101 
I + R ~  

The subscript 0 indicates that Ri -~ and R~ -~ are evaluated at L = L0. Although there is another 
critical state ~0 L < u~ that satisfies [9a], it will not play an important role in this study. 



NONLINEAR STABILITY ANALYSIS OF A FLUIDIZED BED 451 

The regions of stability and instability given in [9a-c] and [10] have an interpretation in terms 
of a wave-hierarchy. Equations [9a, b] imply that the ~0 states are stable when the lower order 
kinematic speed is bounded above and below by the higher order speeds (+  x / T )  and unstable 
when the kinematic speed is no longer within these bounds. If the dispersion in the problem is 
associated with an improved kinematic model, then it is possible to retain the correspondence 
between wave speeds and stability with the result that wave speeds, and hence stability, depend 
on the wave number [10]. See Whitham (1974) for a general discussion of these ideas and Liu (1982) 
for the application to fluidization. 

4. NONLINEAR PROBLEM 

Our goal is to investigate the bifurcation at the critical wavelength L0 using perturbation 
methods. This is accomplished by first deriving a small amplitude and long wavelength approxi- 
mation to [la], [4] and [5] about the ~t0 states close to ~ (see the appendix). A multiple time scale 
analysis is carried out in this section to analyze the evolution of sinusoidal perturbations with wave 
numbers near Lo I. This will give information on the existence of small amplitude periodic solutions 
with wave numbers near Lff i as well as the stability of these solutions. In section 5 the calculations 
for the periodic solutions are extended numerically beyond the small amplitude regime. These 
calculations for the system given by [la], [4] and [5] are shown to be in agreement with the small 
amplitude analysis in this section. First however, we compare our nonlinear equation [A. 14] with 
the analogous equation studied by Liu (1983). 

A small amplitude long wavelength approximation to [la], [3a, b] and [5] has previously been 
given by Liu (1983). Due to differences in the results, our calculations based on [la], [4] and [5] 
leading to [A.14] (repeated here for convenience) are given in the appendix for comparison: 

. ~ ~9~ "X 
t~tx t3tx d3~t d (Co+ +Co+ a°t)+t~/-h-S-,~,,~ 
dt* 2 N a ~ x .  + R~l d--~+ VCo_ dx* = 0. [A.14] 

Although Liu's (1983) derivation (equation 3.1 in his paper) is based on [la], [3a, b] and [5], the 
results should agree with [A. 14] if Pc/Pd is set  equal to zero and boundary layer effects are ignored. 
These are assumptions which Liu makes later in his calculations (pp. 338, 343). When the change 
in notation is taken into account, there is agreement except for the nonlinear correction to the 
lower order wave speed -2Na~ (a3E in Liu's paper). The coefficient N in our model vanishes at 

= 2/(n + 1) which is the inflection point for the particle flux, ~v, in the lower order kinematic 
model. Consequently, N will be positive for ~0 states larger than 0.4 if n = 4 (Needham & Merkin 
1983), for ~t 0 states larger than 0.52 if n = 2.87 and for ~t0 states larger than 0.6 if n =2.34 
(EI-Kaissy & Homsy 1976). Thus, for the % states of interest, the effect of the nonlinear correction 
to the lower order wave speed is to increase this speed for decreasing amplitude of a~t (increasing 
E in Liu's notation). Although Liu does not derive his nonlinear coefficient a3, he demonstrates that 
it is negative based on his formula. He therefore concludes that for the nonlinear correction, a3E, 
the effect is to decrease the lower order wave speed for increasing E. Hence, in Liu's model the effect 
of the nonlinearity is to restore the stability condition, whereas in our model its effect is to maintain 
the instability condition. 

While there is agreement in the second order operator in our [A.14] and Liu's (1983) equation 
3. l, there is disagreement in what should be considered the nonlinear correction to the higher order 
wave speed. As suggested by [A. 14], we consider ~0+a~ to be the nonlinear correction. Since ~0+ > 0 
(see [A.8]), this nonlinear effect causes the higher order wave speed along Co+ to decrease for 
decreasing values of a~t. Liu considers c2E [see Liu's (1983) equation 3.1 and the subsequent 
paragraph] as the nonlinear correction. Since c~ has the dimensions of velocity squared, this cannot 
be added to c~ and his conclusions based on that assumption are meaningless. We claim that a 
negative velocity must first be factored out of c~ leaving a negative quantity, having units of 
velocity, as a nonlinear correction to c~. This would have the effect of decreasing, and not increasing 
as Liu concludes, the propagation speed c~ for increasing amplitude of E (decreasing values of a~t) 
and therefore agrees with our own conclusions. 

UMF 16/3---F 
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Based on our calculations (N > 0, Co+ > 0) the nonlinear effects tend to maintain the instability 
condition in the linearized sense. We will demonstrate both analytically and numerically that 
this indeed is the case and that the nonlinearities do not provide a mechanism for amplitude 
equil ibrat ion--at  least in the near linear regime. 

On the other hand, Liu reached the opposite conclusions based on a3 < 0 and c~e being 
the nonlinear correction to c~. Even if a3 is the correct term, in view of Liu's misinterpretation of 
c~e and that in reality there is a competition between the two effects in his model, it would be 
reasonable to expect a condition for equilibration depending on the relative magnitudes of  a3 and 
c~. However, Liu's (1983) calculation implies that the amplitude always equilibrates in the 
supercritical case. 

The method of solution of the nonlinear equation used by Liu is based on the work of Stuart 
(1960). Here, we use a multiple time scale analysis. Since the results based on this analysis are also 
different from those of Liu, they are presented for comparison. 

In the calculations that follow, [A. 12] and [A. 14] yield the same results to the order considered. 
Since the calculations are simpler, they will be demonstrated with [A. 12]. The corresponding initial 
condition is 

c t ( x * , t * = O ) = F ( e i X * + e - i X ' ) = 2 F c o s ( x * ) ,  - o o  < x * < ~ .  

With L = L0 and ct 0 < e~, the equilibrated solution with zero amplitude propagates. As L is changed 
slightly we initially expect solutions to propagate with finite but very small amplitudes for L 
sufficiently close to L 0 . Hence, expecting " a "  to be small relative to R~ -~ we introduce a new scaled 
time variable t" = R ~ l t  *. With this change of variable, [A. 12] becomes 

• /t0+ c0_ ) 
ctr-- 2NEaax* + ax*x*x* + ~ce ~ - ~ -  ctx.~. -- Co_ e~*~*x*x* + r~E: W(acq.),. : 0, [11 l 

where W = c0_ (50+ + 2N), e = a / R ~  ~ << 1 and v = ~:e. Thus, a / R [  ~ and v are assumed to be of  the 
same order. 

Since e << 1, we look for solutions of the form 

c~ = ~0(x*, ~0, h . . . .  ) + e~,(x*, to, tl . . . .  ) + - . . .  [12] 

In [12] ~ = e~t, which represents the use of multiple time scales. Without this added structure to 
our solution, secular terms appear in the higher orders of  a regular perturbation scheme. The 
added degrees of freedom allow us to eliminate these terms at each level in the calculations. 
As a result, an equation involving the partial derivative ~ occurs at the corresponding O (d) level 
in the calculation. It is then necessary at the end to reconstitute the dependence on the original 
variable ~. 

Substitution of [12] into [11] yields the following sequence of equations: 

L(cto) =_ (ct0)~0 + (ct0)~.~.~. = 0, [13a] 

[-Co+ Co- " " 1 L (oq) = - (~o)r, + 2N(~o) (Cto)~. - x L - - ~ V -  t~to)x.x. - Co_ (~o)~*x.x.~* _J' [13b] 

[-co+ -1 
t o - 

- CO_ (O~l)x*x*x*x.| L(~2) = -(e0)r2 - (cq)r~ + 2N(e, ~0)~* - x k - - ~  (cq)~.x. 

- -  x W(:to (O~O)x.)x* [ 13c] 

and 

L(0q) = -(a0)5 - (at)5 - (ct2)5 + 2N[(a0ct2)x" + 0q(~,)x.] 

[-c0+c0_ 1 
-  L-g ( gx.x. - - + 

The solution of [13a] satisfying the initial condition is 

0% = Ao(t~, t2 . . . .  ) exp[i(x* + ~o)] + c.c., 

[13d] 

Ao(0, 0 . . . .  ) = r ,  [14] 
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where c.c. denotes the complex conjugate. Elimination of the secular terms in [13b] requires 

/%+ Co_ ~ _ 
(Ao)~ = x t ' -~ - -~ i -+  Co_) .%.  [15a] 

Thus, 

oq=t~-~exp[2i(x*+"i*o)]+c.c.t+{Bo(71 . . . .  )exp[i(2x*+8"i'o)]+c.c.}, [15b] 

where 

NF 2 
BoO . . . .  ) = - -  3 

At the next order, elimination of secular terms gives 

-2N2 A* A2i 
(Ao)r2 = 3 [16a] 

(here, superscript * signifies complex conjugate) 

and 

Consequently, 

iA2x (6W - 2N c°+ Co_ 

N 2  ,4 3 
+ ~ A  exp[3i(x* + ?o)] 

14Co_ N )  exp[2i(x* + ~o)] ' NA*Bo + - - - f - - -  exp[i(x* + 77o)] 

NAoBo 
-~ exp[i(3x* + 97o)] + A,(fi . . . .  ) exp[i(x* + ~o)] 

+ Bl(t, . . . .  ) exp[i(2x* + 87o)] + Co(fi . . . .  ) exp[i(3x* + 277o) ] + c.c. 

with appropriate initial conditions for A~, B~ and Co, so that 

• 2(x*, 0 . . . .  ) = 0. 

Removal of the secular terms at O(E 3) gives 

{Co+Co_ ] , 2 NAoAo (AolT,= -(A,)~ + x~-~"j-+ Co_/AI 9 

. /Co+ Co_ . '~ 
(Bo)~ = - (B1)~, + '~rl\ R~_-------- ~ + 4Co_) Bi 

and 

- - x ( 9 W - 2 N  c°-+ c°-R{ 1 14Nco_), 

,. f<o+ <o- ) 
(Co)~] = ~'x t ~  + 9Co_ Co. 

Since higher order results will not be needed, ~3 is not given. Using 

dAo/dt '= E(Ao)~ + E2(Ao)~: + E3(Ao);3 + O (c4), 

[15a], [16a] and [17a] imply that 

- '  ( .  ) =Ex _ +Co- M -  2N2 *M2i 

xN Co+ Co- -ea--~-( 9 W - 2 N  -~ i  14Nco-)M*M2+O("), 

where M = Ao + e2A1. If we let M = IMle i°, it then follows that 

Or = k22N2[M[2 
- 3 4- O (E 4) 

[16b] 

[16c] 

[17a] 

[17b] 

[ 1 7c] 

[ 1 8a] 
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and 

dlMt 
dt* = E~C(Co+ Co_ + R{I Co_ )[MI 

-R{IE3X--~-~(9W-2NC°+C---~°-R{ I 14Nco)IMI3+O(R~I,4)._ [18b] 

If [18b] is to have a nonzero equilibrium value for I M I, it is necessary that 

CO+ CO- 
R~---- q-  + Co_ = O (E2). [19] 

Using this result to simplify [18b] and noting that W = c0_(?0÷ + 2N), we have 

dlM_____J[ = ex LMlco_ [Co+ + R~ ~ - R{~ e2IMI2 N (Eo+ +-~N)] + O (R~-I E4). [20] 
dt* 

Equation [20] implies that the nontrivial equilibrium value for I M01 is given by the equation 
// L 2"~ -I W Z 

2~°n(1- -~°)n( ' t td°v t ' )  [21] 
2aiM01= Z~ \-gP-:-d / N(E0++-~N)_] " 

We choose 2alg0l  because it is the amplitude of the wave (see [22]). For the case L > L0 an 
equilibrium amplitude exists only if N(?0+ + ~N) < 0. However, in our model, N is positive (?0+ > 0 
in both our model and Liu's model) and there is no equilibration. Therefore, if L > L0 an initial 
disturbance will not equilibrate, and if L < L0 the disturbance will decay to zero (as predicted by 
linear theory) only when the initial amplitude is less than the equilibrium amplitude given by [21]. 
If the amplitude is larger than this critical amplitude, the disturbance will also grow (see figure 1). 
The solid curve is the graph of [21]. The dashed curve is based on the numercal calculations 
of the next section and shows agreement with the nonlinear theory for small amplitudes but 
disagreement for large amplitudes. 

With the change in notation taken into account, [21] agrees to the order considered with Liu's 
amplitude equation 5.4 if (E0+ + 2N) is replaced by co+. Since Liu reasons (in the current notation) 
that N is negative, he concludes using his formula that for the supercritical case (L > L0) an 
equilibrium amplitude always exists for t ~ ~ .  This is opposite to our conclusions and, as 
discussed earlier, unreasonable in view of the interpretations of the effects of the nonlinearities. The 
numerical calculations in the next section also show that there can be no equilibration for L > LQ 
in the small amplitude regime because there are no small amplitude periodic solutions for these 
values of L. 

It is clear from [17b, c] and [18b] that the modes exp[i(2x* +8~0)], exp[i(3x*+27~0)], 
exp[i(3x* + 9~0)] and exp[i(x* + 7~0)] decay to zero as t*---, ~ .  Therefore, [29] has the (unstable) 
periodic traveling wave solutions: 

a~=2alMolcOs x * + t * R f  ~ 1 3 +O(E 4) - 0 0  +O(aE). [22] 

AMP. 

t 
" " ~  L Lo 

Figure 1. Graph of the equilibrium amplitude vs wavelength. 
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5. N U M E R I C A L  C A L C U L A T I O N S  

The periodic traveling wave solutions found in section 4 are restricted to very small amplitudes 
with a <<R~-~<< 1, even though [A.12] and [A.14] assume only a<< 1 and R~-I<< 1. The existence of  
periodic traveling wave solutions of  [A.14] that includes the results of  section 4 and extends it 
to amplitudes of  order R~ -~ has been demonstrated both numerically (Christie & Ganser 1989) 
and analytically using perturbation theory (Ganser & Drew 1987). Both of  these papers 
recover the results of  section 4 when a<<R7 ~ and in particular the formula for the amplitude 
equation [21]. 

We calculate numerically, periodic traveling wave solutions of  the original system given by 
[la], [4] and [5]. This will yield further verification of  the approximations and analysis used in 
this paper and also allow extension to cases when a and R~ ~ are not necessarily small and L is 
not large. The traveling wave solutions of  [la], [4] and [5] are functions of  ~ ffi ( x  - s t ) / L  which 
solve 

where 

vt ( L , ) 2 ( 1 - a ) "  t3~ 

[23] 

¢ 
V d ----- - -  + S, 

gd = ~ f ( a ) ,  

a n d  

L2 = ~ v ,  
gPd 
L 

Ll 

L;  = gL---[" 

This equation contains the two parameters denoted by c, the integration constant from [la], and 
s, the speed of  the wave. It is preferable to change to the variables a~ and ot~ (0 ~< ~ ~< a I ~< 1) which 
are the equilibrium points for [23] [~tVd -- aj + Vta(1 -- a) ~ = 0]. This gives 

v, (L')  z (1 - ~t) n t~ 

with 

_- (°t - atl ~[~t2(1 _ ~t2). _ ~t,(1 _ ~tl).] + a(1 _ a). 
\a~ - a ; /  

[24] 

--=c(at'vt ~2) _ ~ t ( 1 .  ~)n - ~l I ~ 2 ( 1 "  ~ 2 ) n - - ~ l ( l "  (Xl - ~2 - - a l ) n  1 "  7 • 

It can be shown (Fanucci et aL 1981; Needham & Merkin 1983) that the equilibrium point at a2 -- ~2 
is a center when 

c _ -  [25] 
Vt 

Equation [25] has the solution a~ -- ~2 -- ~t~ (see [9b]). This solution continues with ~2 < ~t~ having 
a corresponding atl > ~t~ that solves [25]. 
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For a given ~0 < ~] we are interested in the bifurcation at the critical point L = L0 given by [10], 
or in terms of the current notation, 

= / L ° ' ] z  = f(~°)(1 - ~ ° ) "x /~  [26] 

The values L '  = L~, ~z = ~0 and the corresponding ~ solution of [25] with ~z = ~0, substituted into 
[24], gives the critical periodic solution of zero amplitude. Using the method of continuation, we 
calculate numerically nontrivial periodic solutions of  [24] starting with these parameter values. 

A value for L~ is needed for the calculation. As stated in section 2, #0 is of  the order of 10 g/(cm s). 
To agree with the calculations of Liu, we will let f ( ~ ) =  ~-5. The terminal velocity v, for particles 
with diameter of  the order of a few hundred microns in a gas fluidized bed with particle density 
pd=O(3g/cm 3) is 3 -5m/ s .  This gives L ~ = O ( l c m )  and L~=O(100) .  For  the numerical 
calculations we choose L'c = 200. For  these parameter values, and ~0 -~ 0.6, we have Lc = O (1 cm). 
Thus, with these parameter values, the analysis in section 4 requires L >> 1 cm or L '  >> 1. Actually, 
we shall see that there is good agreement with the theory down to L '  = O (5). 

The constant value for F '  is 

F '  = n:(1 - ~8)z,- z(~8):. [27] 

This constant has been selected so that the critical state is ~8. We choose ~8 = 0.6 and n = 3.5 in 
the numerical calculations. 

In the numerical method, [24] is discretized on a uniform grid of  points by a second order 
finite difference method. Periodic boundary conditions are chosen as ~ (0 )=s (2 rc )=d~  and 
~'(0) = ~'(21t) = dz, where dt and dz are prescribed constants. These four conditions determine the 
solution ct(x) of  [24] and the unknowns ~ and ~z- The system of algebraic equations produced by 
the method is solved by Newton's method with 3 or 4 iterations being required, typically, for the 
maximum norm of  the difference between successive iterates to be < 10 -8. Periodic solutions are 
found starting with d~ = ~0, dz small and increasing dz in small increments. The initial values for 
each Newton step are taken to be those computed at the previous dz value. 

The surface representing the two-parameter family of periodic traveling wave solutions found 
numerically is given in figure 2. This shows the graph of  the numerical amplitude (one-half of the 
difference of  the maximum and minimum numerical approximations of s), as a function of L ' ,  and 
~0 which is the average value of the wave over one period. Recall that the wavelength in physical 
variables is 2nL. To help visualize the surface, traces of the surface are generated for fixed values 
of L '  starting from 1.5 in increments of 0.5. The numerical amplitude ranges in value from 0 to 
0.1. The curve at the base of  the surface (numerical amplitude = 0) is therefore the critical curve 
given by [26] from which the nontrivial periodic solutions bifurcate. The critical curve separates 
the linearly stable values of  ~0 and L '  (hatched region) from the linearly unstable values (unhatched 
region) in the AMP. = 0 plane. The curve Y in figure 2, parallel to the L '  - AMP. plane, is the 
curve in figure 1 shown as part of the surface with L0 = 6.5 and ~0 = 0.59920985. 

It is clear from the surface that, for large wavelengths, there are only small amplitude solutions 
with average value % corresponding to linearly stable values of  ~0 and L'.  Consequently, small 
amplitude perturbations about an unstable ~0 state cannot equilibrate since there are no periodic 
solutions with the same average, %, or wave number as the perturbation. This agrees with the 
analysis in section 4. However, for L '  sufficiently small there are such periodic solutions as indicated 

by the surface. 
Table 1 compares the numerical amplitude of the solutions with the amplitude predicted by [21]. 

As should be expected, the best agreement is for large L '  with L~ close to L' .  However, there is 
good agreement with L '  as small as 5 and the amplitude as large as 0.005. 

Three representative periodic solutions are shown in figure 3 where the broken line denotes the 
average value %. Their corresponding locations on the surface in figure 2 are indicated by the points 
A (~0 = 0.598688, L '  = 5), B (~0 = 0.660567, L '  = 14) and C (~0 = 0.545393, L '  = 1.5). Solution A 
is of  the type analyzed in section 4 with small amplitude (0.001064) and relatively long wavelength. 
Its Fourier series is dominated by its primary mode. On the other hand, solutions B and C contain 
important contributions from higher harmonics and the nonlinear analysis of  section 4 is certainly 
not relevant to them. Solutions B and C are similar to those discussed in Ganser & Drew (1987), 
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Figure  2. The  surface represent ing  the family  o f  per iod ic  solut ions.  
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Figure  3. Three  representa t ive  per iodic  solut ions.  

Tab le  1. C o m p a r i s o n  between the numer ica l  amp l i t ude  and  the a m p l i t u d e  predic ted  by  [21] 

Numer i ca l  
~t 0 L ~ L '  a m p l i t u d e  2a I M01 

0.599837 14.262425 14 1.5313E - 4 1.5113E - 4 
0.599855 15.147080 14 3.0852E - 4 3.0205E - 4 
0.599963 30.000707 14 7.4293E - 4 6.9869E - 4 
0.599409 7.510654 7.5 1.5211E - 4 1.4777E - 4 
0.599480 8.003345 7.5 1.0198E - 3 9.6769E - 4 
0.599924 20.908399 7.5 2.8635E - 3 2.5709E - 3 
0.598658 5.00! 370 5 1.5144E - 4 1.4777E - 4 
0.599078 6.020123 5 4.0055E - 3 3.4951E - 3 
0.599548 8.575045 5 6.0005E - 3 5.0628E - 3 

where [A.14] is analyzed. In that paper, a class of traveling waves are constructed from a smooth 
transition solution which satisfies the equation with #d0 = 0 and a boundary layer solution. We are 
currently working on this analysis for [24]. 

6. CONCLUDING REMARKS 

The analysis given in this paper demonstrates that for the larger (macroscopic) wavelengths 
there is no equilibration of small amplitude perturbations--at least in the small amplitude regime. 
However, figure 2 suggests that there may be equilibration for the smaller (microscopic) wave- 
lengths at relatively small amplitudes. To show this, it would be necessary to analyze the stability 
of these solutions. If amplitudes > 0.1 were included in figure 2, it would show that for the larger 
wavelengths the surface does fold back and begins to "cover" the linearly unstable (a0, L') region 
as it already does for the smaller wavelengths. This was not shown because the results are 
nonphysical with unreasonably large particle concentrations. However, it does indicate that there 
are perhaps stable but necessarily large amplitude periodic solutions in a more realistic model. 

Greater physical relevance would be achieved by the inclusion of a particle pressure F(0t) which 
increases rapidly at a packing concentration. Such forms for F(~t) have already been used by 
Fanucci et  al. (1979, 1981). Similar forms are discussed in Drew (1983) and described there as 
approaching an incompressible model. 

As discussed in section 5, with respect to solutions B and C in figure 3, these large amplitude 
solutions have smooth transitions separated by shock-like structures. This indicates that a model 
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without viscosity and appropriate shock conditions yields similar results for large 
amplitudes. 

It is interesting to speculate that the corresponding surface for liquid fluidized particles may fold 
at much smaller amplitudes. If this indeed is the case, and these solutions are stable, it would be 
an important step in the understanding of the mathematical model. In view of the previous remarks, 
we hypothesize that the instabilities so prevalent in the mathematical models are much more severe 
than presently believed. As the volumetric flux approaches the critical value and the bed becomes 
unstable, the model predicts relatively large amplitude disturbances rather than small bubbles or 
slugs. For gas fluidized particles, large amplitudes appear to be on the order of 0.1 or more. For 
liquid fluidized particles, "large amplitudes" are probably much smaller than 0.1. This picture is 
consistent with the well-known fact that the instability predicted by linear theory is much more 
severe, in general, for gas fluidized beds than for liquid fluidized beds (Anderson & Jackson 1968). 
We are currently studying the original [la], [3a, b] and [5] to see if this description is valid for more 
realistic choices of F' and for liquid fluidized particles. 
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A P P E N D I X  

In this section we derive a small amplitude and long wavelength approximation to [la], [4] and 
[5] for wave numbers near Lo ~ and ~ states close to m~. Studying wave numbers near L~ -t yields 
solutions with small amplitude and studying only m 0 states near m~ implies that Ro t is small 
(see [10]). 

Substitution of [7a-e] into [la], [4] and [5] yields (superscript -,, dropped) 

am Ck O~t O((~ + am)vd) 
f =0,  [A.1] 

Ot* ca) Ox* Ox* 

(too d -  a m ) ( v  d . - -  v c )  - -  m d -  V c = 0 [A.2] 

and 

['=-'=fOOd Ck tgVd -="-:'. l VcOPd (1--mo--am) PdVtF" Om + am)(1 
- m ° - a m ) \ e t "  Vco Ox* F a V d o x ' f  LBo LvcoBo Ox* 

OV d 
0 (too + am) ~x*} (1 - ~ - am)(~ + B - ~ -  

- + ~ 0 ( 1  + a ~ o -  av~) + (l  - ~ 0 -  am) 
/ 

0. [A. 3] 
0x* 

Since a << 1, a small amplitude expansion is performed keeping terms of O(a) and omitting terms 
O(a2). A technical point is the retention of higher order dispersive terms. The basic dispersion in 
the system is of order R~ -t. Since R~t<< 1 for the wavelengths of interest, terms of order (R~t) 2 
and (aR{ t) will be omitted. Likewise, only diffusive-like terms of order (vR{ ~) and (va) will be 
kept while omitting quantities of order v(R~-~) 2, vaR{ t, va ~, v~a and v~R{ ~. 

By using [A.2] in [A.3] to eliminate v° it is possible to solve for yd. Since we will ultimately 
substitute an expression for (~0 + am)vd into [A.1], it is convenient now to solve for (m0+ am)va: [ ( - , ]  

(1 -- ~ -- amy' O (too + am) ~x*J F v~b [A.41 
(~  + am)vd = H[am] + 0 ~ R[ l  Ox* 

where 

H[am] = 

(m o + a m ) ( l .  ~ o ) ' - "  
[(1 - -  ~ ) "  - -  (1 - -  ~ - -  am)"] 

= Ck m - Nam 2 + O(a2), 
Vco 

N =nF (n-!)m° ] 
L 2 ( l  _ ~o) i 

and 

• . r  av, 1 v , ' r  
= (~o + amJL- ~ + \v¢o l ax*J v~ a~" 

Using [A.4] it is possible to solve for Vd to the desired order. This calculation gives 

V d ---- _ + m 2 v~omo ~ 0-~'~2 + O(R, vdp). [A.5] 

Here, R represents remainder terms of order a 2, aR£ t and (R~-~) 2. Substitution of [A.5] into the 
expression for ~b yields 

-v~at---~+L\v~oJ V~o Jax* mokV-~/ am~-x* 

_2N(~)am~x,+(Ck~ . l 03m k - ~ /  ~ O- '~÷O[R 'vO'amt"RT 'm"]"  [A.6] 
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It is useful to rewrite 4) in terms of the characteristics of the corresponding hyperbolic problem 
( m  = 0): 

c+[ae] = ck (v2tF"~ '/2 
- - -  + avd + [A.7] - - \ V £ )  

Since Co+ = O(Rf~),  it is possible with [A.5] to write 

where 

and 

c+[ael = Co+ + Eo+ ae + O(a 2, a R f  I, vdp), 

Ck 
Co+ - > 0  

/)cO e0 

[A.81 

Co_ = - 2  ck + O(a, R f ' ) .  [A.91 
/)c0 

Hence, 

q~ =Co_ ~-~+(Co+ +?o+ae)~x .  + N a e ~ x . - ~ R f '  ae,. 

= O ( e t ,  , a ,  R 2 1 ) .  [A.10] 

The expression for ( ~ + a e ) v d  can now be simplified with the help of [A.5] and [A.10] to 
d2e 

(Co + ae)vd = Cke _ Nae2 + R f  I dx .2 
VCO 

I1 de 0e de 1 d3e 1 
+ VCo_ -~ - ~  + (Co+ + Eo+ ae) ~x* + Nae Ox* - -2 R ; '  dx,3 j 

+ O(R, vR, v2a, vZRf  l, v2e,., vae,,, vR{le,,). [A.11] 

Finally, substitution of [A.5] into [A.1] gives 

de de d3e "~ 
de de d3 e 3 (Co+ + E0+ae) 0--x-~+ 2Nae-ff---x,- R f  ~ Ox,-----3 ] 
Ot---g - 2Nae ~x* + R ; l  ~ + VCo_ dx* 

= O(R, vR, v2e, v2R~-t). [A.12] 

We have used the approximation 
de d~ d3e 
dt* = 2Nae ~x* - R{ l  ~ + O(vR;  l, va) [A.13] 

to estimate the time derivatives in [A.II]. The use of equation [A.13] also yields the following 
equivalent equation to the order considered: ( 0 0,) 

de 2Na~ de d3 e d (c0++E0+ae)0--~-g+O-T~ =O(R ,  vR, v2ct, v2Rf l )  • [A,141 
dt - -g  - ~x* + R{ l  ~ + VCo_ ax* 

Note that because e,, = O ( R f  1, a), the ~,.~*x, and e,.t. terms in [8] are of higher order and do not 
appear here. Thus, in this approximation, we are beyond the boundary layer since e,.,, is small. 
Liu (1983) makes the same assumption later in his calculation (see his equation 5.1). Another 
consequence of omitting terms of order (R~-t)2 is that the formula for the critical wave number, 
[10], is modified to 

- R ~  I = Co+. [A.15] 


